Interest Rate Theory in the Presence of Multiple Yield Curves – An FX-like Approach

Thomas Krabichler

3rd Imperial - ETH Workshop on Mathematical Finance

March 5, 2015

1 Introduction and Motivation

2 The General FX-like Setting

We consider the following zero-coupon bonds with maturity T:

Туре	non-defaultable	defaultable	
t-Price	P(t,T)	$\widetilde{P}(t,T)$	
Payoff	P(T,T)=1	$0 < \widetilde{P}(T, T) \leq 1$ (random)	

We introduce a third term structure

$$Q(t,T) := rac{\widetilde{P}(t,T)}{\widetilde{P}(t,t)}.$$

We introduce a third term structure

$$Q(t,T) := rac{\widetilde{P}(t,T)}{\widetilde{P}(t,t)}.$$

Observation:

Q(T, T) = 1,

$$\widetilde{P}(t,T) = \widetilde{P}(t,t)Q(t,T) =: S_tQ(t,T).$$

We introduce a third term structure

$$Q(t,T) := rac{\widetilde{P}(t,T)}{\widetilde{P}(t,t)}.$$

Observation:

Q(T, T) = 1,

$$\widetilde{P}(t,T) = \widetilde{P}(t,t)Q(t,T) =: S_tQ(t,T).$$

Paradigm (Jarrow & Turnbull 1991)

 $\widetilde{P}(t, T) = S_t Q(t, T)$ may be interpreted as conversion of foreign default-free counterparts. $S_t := \widetilde{P}(t, t)$ is referred to as **recovery rate** or **spot FX rate** at time t.

We consider the following zero-coupon bonds with maturity T:

Туре	non-defaultable	defaultable	non-defaultable
Currency	domestic	domestic	foreign
t-Price	P(t,T)	$\widetilde{P}(t,T)$	$Q(t,T) := rac{\widetilde{P}(t,T)}{\widetilde{P}(t,t)}$
Payoff	P(T,T)=1	$0 < \widetilde{P}(T, T) \leq 1$ (random)	Q(T,T)=1

Multiple Default Model and Fractional Recovery

Multiple Default Model and Fractional Recovery

- $r = (r_t)_{t \geq 0}$
- $N = (N_t)_{t \geq 0}$
- $s = (s_t)_{t \ge 0}$

short rate process w.r.t. EMM \mathbb{Q} ,

Cox-process with intensity $\lambda = (\lambda_t)_{t \ge 0}$ and jumps at the random times $\{\tau_i\}_{i \in \mathbb{N}}$,

(0,1)-valued loss quota process with first moments $\overline{s}_t := E_{\mathbb{Q}}[s_t]$,

 $dS_t = -S_{t-}s_t dN_t, \ S_0 = 1$ recovery rate process.

Multiple Default Model and Fractional Recovery

- $r = (r_t)_{t \geq 0}$
- $N = (N_t)_{t \ge 0}$
- $s = (s_t)_{t \ge 0}$

short rate process w.r.t. EMM \mathbb{Q} ,

Cox-process with intensity $\lambda = (\lambda_t)_{t \ge 0}$ and jumps at the random times $\{\tau_i\}_{i \in \mathbb{N}}$,

(0,1)-valued loss quota process with first moments $\overline{s}_t := E_{\mathbb{Q}}[s_t]$,

 $dS_t = -S_{t-s_t} dN_t, S_0 = 1$ recovery rate process.

Theorem (Duffie-Singleton, Schönbucher)

Under suitable technical assumptions, we have for all $0 \le t \le T < \infty$

$$\widetilde{P}(t,T) = \underbrace{\left(\prod_{\tau_i \leq t} (1 - s_{\tau_i})\right)}_{=S_t} \underbrace{E_{\mathbb{Q}}\left[e^{-\int_t^T r_u + \overline{s}_u \lambda_u \, du} \middle| \mathcal{F}_t\right]}_{=Q(t,T)}$$

• FX-models are well-understood and widely used. *Multi-currency models for FX rates in a target zone* are of particular interest in our case.

- FX-models are well-understood and widely used. *Multi-currency models for FX rates in a target zone* are of particular interest in our case.
 - The introduction of the foreign market is subject to knowing the recovery rate.

- FX-models are well-understood and widely used. *Multi-currency models for FX rates in a target zone* are of particular interest in our case.
 - The introduction of the foreign market is subject to knowing the recovery rate.
 - The recovery rate is only observable sporadically, if at all.

- FX-models are well-understood and widely used. *Multi-currency models for FX rates in a target zone* are of particular interest in our case.
 - The introduction of the foreign market is subject to knowing the recovery rate.
 - The recovery rate is only observable sporadically, if at all.
- The FX-like approach allows for interpretations that comply with the common economic intuition, e.g., the differentiation between liquidity squeezes and true default events.

- FX-models are well-understood and widely used. *Multi-currency models for FX rates in a target zone* are of particular interest in our case.
 - The introduction of the foreign market is subject to knowing the recovery rate.
 - The recovery rate is only observable sporadically, if at all.
- The FX-like approach allows for interpretations that comply with the common economic intuition, e.g., the differentiation between liquidity squeezes and true default events.
- The recovery rate admits a natural economic interpretation by characterising to what extent the related party is able to meet its imminent financial obligations. However, what is a meaningful recovery rate in time instances in which no payments are due?

1 Introduction and Motivation

2 The General FX-like Setting

Let $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ with $\mathbb{F} = (\mathcal{F}_t)_{t \geq 0}$ be a filtered probability space satisfying the usual conditions. We consider three \mathbb{F} -adapted series of zero-coupon bond prices, where the properties on the right-hand side shall hold a.s. for all maturities $T \geq 0$.

Let $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ with $\mathbb{F} = (\mathcal{F}_t)_{t \ge 0}$ be a filtered probability space satisfying the usual conditions. We consider three \mathbb{F} -adapted series of zero-coupon bond prices, where the properties on the right-hand side shall hold a.s. for all maturities $T \ge 0$.

$$\left\{P(t,T)\right\}_{0\leq t\leq T<\infty}$$

Domestic non-defaultable zero-coupon bonds with payoff P(T, T) = 1.

$$\left\{\widetilde{P}(t,T)\right\}_{0\leq t\leq T<\infty}$$

Domestic defaultable zero-coupon bonds with a random payoff $0 < \widetilde{P}(T, T) \le 1$.

$$\{Q(t,T)\}_{0\leq t\leq T<\infty}$$

Synthetic foreign non-defaultable zero-coupon bonds satisfying the relation

$$Q(t,T) = rac{\widetilde{P}(t,T)}{\widetilde{P}(t,t)}.$$

Moreover, we consider the following two ${\ensuremath{\mathbb F}}\xspace$ -adapted processes:

Moreover, we consider the following two $\mathbb F\text{-}\mathsf{adapted}$ processes:

- $B = (B_t)_{t \ge 0}$ Domestic risk-free bank account with initial value of 1 monetary unit.
- $S = (S_t)_{t \ge 0}$ Recovery/FX rate process satisfying $S_t \equiv \widetilde{P}(t, t)$.

Moreover, we consider the following two $\mathbb F\text{-}\mathsf{adapted}$ processes:

- $B = (B_t)_{t \ge 0}$ Domestic risk-free bank account with initial value of 1 monetary unit.
- $S = (S_t)_{t \ge 0}$ Recovery/FX rate process satisfying $S_t \equiv \widetilde{P}(t, t)$.

Having the Fundamental Theorem of Asset Pricing for frictionless markets in mind, we assume that there exists an equivalent local martingale measure (ELMM) $\mathbb{Q} \approx \mathbb{P}$ such that the discounted processes

$$\left(\frac{P(t,T)}{B_t}\right)_{0 \le t \le T}, \qquad \left(\frac{S_t Q(t,T)}{B_t}\right)_{0 \le t \le T} = \left(\frac{P(t,T)}{B_t}\right)_{0 \le t \le T}$$

are local \mathbb{Q} -martingales for all $T \geq 0$.

Moreover, we consider the following two $\mathbb F\text{-}\mathsf{adapted}$ processes:

- $B = (B_t)_{t \ge 0}$ Domestic risk-free bank account with initial value of 1 monetary unit.
- $S = (S_t)_{t \ge 0}$ Recovery/FX rate process satisfying $S_t \equiv \widetilde{P}(t, t)$.

Having the Fundamental Theorem of Asset Pricing for frictionless markets in mind, we assume that there exists an equivalent local martingale measure (ELMM) $\mathbb{Q} \approx \mathbb{P}$ such that the discounted processes

$$\left(\frac{P(t,T)}{B_t}\right)_{0\le t\le T}, \qquad \left(\frac{S_tQ(t,T)}{B_t}\right)_{0\le t\le T} = \left(\frac{P(t,T)}{B_t}\right)_{0\le t\le T}$$

are local \mathbb{Q} -martingales for all $T \geq 0$.

Corresponding HJM-framework: Amin and Jarrow Economy, [AJ1991]

In multi-currency settings, the ratio

$$F(t,T) := rac{\widetilde{P}(t,T)}{P(t,T)} = S_t rac{Q(t,T)}{P(t,T)}$$

is usually referred to as *forward FX rate*. As seen from time t, the agreement to exchange one foreign monetary unit for locked-in F(t, T) domestic monetary units at time T is at arm's length and worth zero.

In multi-currency settings, the ratio

$$F(t,T) := rac{\widetilde{P}(t,T)}{P(t,T)} = S_t rac{Q(t,T)}{P(t,T)}$$

is usually referred to as *forward FX rate*. As seen from time t, the agreement to exchange one foreign monetary unit for locked-in F(t, T) domestic monetary units at time T is at arm's length and worth zero.

Obviously it holds

$$\widetilde{P}(t,T) = F(t,T)P(t,T).$$

F(t, T) shall refer to as forward recovery rate.

In multi-currency settings, the ratio

$$F(t,T) := rac{\widetilde{P}(t,T)}{P(t,T)} = S_t rac{Q(t,T)}{P(t,T)}$$

is usually referred to as *forward FX rate*. As seen from time t, the agreement to exchange one foreign monetary unit for locked-in F(t, T) domestic monetary units at time T is at arm's length and worth zero.

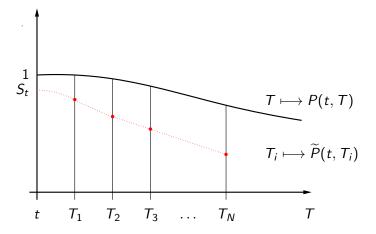
Obviously it holds

$$\widetilde{P}(t,T) = F(t,T)P(t,T).$$

F(t, T) shall refer to as forward recovery rate.

If \mathbb{Q} is an EMM and \mathbb{Q}^{T} denotes the induced *T*-forward measure associated with the numéraire $(P(t, T))_{0 \le t \le T}$, then $(F(t, T))_{0 \le t \le T}$ defines a \mathbb{Q}^{T} -martingale.

Arbitrage-Free Interpolation



Arbitrage-Free Interpolation

We assume that a intermittent but arbitrage-free interest rate framework is given w.r.t. EMM \mathbb{Q} :

$$B = (B_t)_{t \ge 0}$$
$$[t, \infty) \longrightarrow \mathbb{R}, T \longmapsto P(t, T)$$
$$0 = T_0 < T_1 < \ldots < T_N = T^*$$
$$(\widetilde{P}(t, T_i))_{0 \le t \le T_i}$$

bank account numéraire,

comprehensive term structure for nondefaultable bonds for any $t \ge 0$,

discrete tenor structure,

inferrable defaultable bond prices for i = 1, 2, ..., N.

Arbitrage-Free Interpolation

We assume that a intermittent but arbitrage-free interest rate framework is given w.r.t. EMM $\mathbb{Q}:$

$$\begin{split} B &= (B_t)_{t \geq 0} & \text{bank account numéraire,} \\ [t,\infty) &\longrightarrow \mathbb{R}, T \longmapsto P(t,T) & \text{comprehensive term structure for non-defaultable bonds for any } t \geq 0, \\ 0 &= T_0 < T_1 < \ldots < T_N = T^* & \text{discrete tenor structure,} \\ & (\widetilde{P}(t,T_i))_{0 \leq t \leq T_i} & \text{inferrable defaultable bond prices for} \\ & i = 1, 2, \ldots, N. \end{split}$$

Objective: Complementing this setting to an enhanced credit risk framework by interpolating the discrete defaultable term structure in the maturity dimension.

Let

$$k(T) := \max \{ i = 1, 2, \dots, N \mid T_{i-1} < T \}$$

be the index of the next upcoming gridpoint and $\vartheta : \mathbb{T} \longrightarrow [0,1]$ be any (deterministic) RCLL function with

$$\lim_{\delta \to 0+} \vartheta(T_i + \delta) = 1, \qquad \lim_{\delta \to 0+} \vartheta(T_{i+1} - \delta) = 0$$

for all i = 0, 1, ..., N - 1.

Let

$$k(T) := \max \{ i = 1, 2, \dots, N \mid T_{i-1} < T \}$$

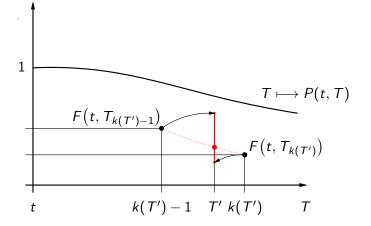
be the index of the next upcoming gridpoint and $\vartheta : \mathbb{T} \longrightarrow [0,1]$ be any (deterministic) RCLL function with

$$\lim_{\delta \to 0+} \vartheta(T_i + \delta) = 1, \qquad \lim_{\delta \to 0+} \vartheta(T_{i+1} - \delta) = 0$$

for all i = 0, 1, ..., N - 1.

We make for all $T \in [0, T^*]$ the ansatz

$$S_T := \vartheta(T) \frac{1}{P(T_{k(T)-1}, T)} S_{T_{k(T)-1}} + (1 - \vartheta(T)) P(T, T_{k(T)}) F(T, T_{k(T)}).$$



$$F(t, T') := \vartheta(T') \frac{P(t, T_{k(T')-1})}{P(t, T')} F(t, T_{k(T')-1}) + (1 - \vartheta(T')) \frac{P(t, T_{k(T')})}{P(t, T')} F(t, T_{k(T')}).$$

More precisely,

$$F(t, T) := \begin{cases} \vartheta(T) \frac{P(t, T_{k(T)-1})}{P(t,T)} F(t, T_{k(T)-1}) + (1 - \vartheta(T)) \frac{P(t, T_{k(T)})}{P(t,T)} F(t, T_{k(T)}) &, \text{ if } t \leq T_{k(T)-1}, \\ \vartheta(T) \frac{1}{P(T_{k(T)-1},T)} S_{T_{k(T)-1}} + (1 - \vartheta(T)) \frac{P(t, T_{k(T)})}{P(t,T)} F(t, T_{k(T)}) &, \text{ if } t > T_{k(T)-1}. \end{cases}$$

More precisely,

$$F(t,T) := \begin{cases} \vartheta(T) \frac{P(t,T_{k(T)-1})}{P(t,T)} F(t,T_{k(T)-1}) + (1-\vartheta(T)) \frac{P(t,T_{k(T)})}{P(t,T)} F(t,T_{k(T)}) &, \text{ if } t \leq T_{k(T)-1}, \\ \vartheta(T) \frac{1}{P(T_{k(T)-1},T)} S_{T_{k(T)-1}} + (1-\vartheta(T)) \frac{P(t,T_{k(T)})}{P(t,T)} F(t,T_{k(T)}) &, \text{ if } t > T_{k(T)-1}. \end{cases}$$

Proposition

Let the intermittent interest rate framework be given. If one follows the proposed interpolation scheme, then $(F(t, T))_{0 \le t \le T}$ forms a \mathbb{Q}^{T} -martingale for each $T \in [0, T^*]$.

More precisely,

$$F(t,T) := \begin{cases} \vartheta(T) \frac{P(t,T_{k(T)-1})}{P(t,T)} F(t,T_{k(T)-1}) + (1-\vartheta(T)) \frac{P(t,T_{k(T)})}{P(t,T)} F(t,T_{k(T)}) &, \text{ if } t \leq T_{k(T)-1}, \\ \vartheta(T) \frac{1}{P(T_{k(T)-1},T)} S_{T_{k(T)-1}} + (1-\vartheta(T)) \frac{P(t,T_{k(T)})}{P(t,T)} F(t,T_{k(T)}) &, \text{ if } t > T_{k(T)-1}. \end{cases}$$

Proposition

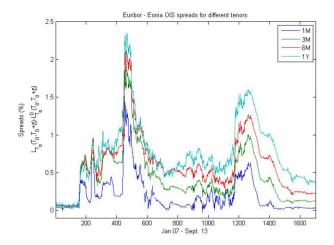
Let the intermittent interest rate framework be given. If one follows the proposed interpolation scheme, then $(F(t, T))_{0 \le t \le T}$ forms a \mathbb{Q}^{T} -martingale for each $T \in [0, T^*]$.

- Remarkably, the scheme implies arbitrage-free dynamics for the forward recovery rate and works irrespective of the underlying distributions.
- It provides a very nice option of what a meaningful (forward) recovery rate may be in time instances in which no payments are due.

1 Introduction and Motivation

2 The General FX-like Setting

Modelling of the Interbank Market



[CFG2014] provides a general HJM-framework for multiple yield curve modelling. Each Libor rate to a certain tenor has its own foreign market.

Thomas Krabichler (ETH Zürich)

FX-like Approach

March 5, 2015 18 / 20

Outlook (work in progress)

Thomas Krabichler (ETH Zürich)

• Modelling of the interbank market and credit derivatives based on one foreign market

- Modelling of the interbank market and credit derivatives based on one foreign market
- Aspects of liquidity, [FT2013]

- Modelling of the interbank market and credit derivatives based on one foreign market
- Aspects of liquidity, [FT2013]
 - Institutional liquidity

- Modelling of the interbank market and credit derivatives based on one foreign market
- Aspects of liquidity, [FT2013]
 - Institutional liquidity
 - Asset liquidity / liquidity in the interbank market: Concept of eligible numéraires, [KST2013]

- Modelling of the interbank market and credit derivatives based on one foreign market
- Aspects of liquidity, [FT2013]
 - Institutional liquidity
 - Asset liquidity / liquidity in the interbank market: Concept of eligible numéraires, [KST2013]
- Intertwinement of liquidity risk with credit risk

- Modelling of the interbank market and credit derivatives based on one foreign market
- Aspects of liquidity, [FT2013]
 - Institutional liquidity
 - Asset liquidity / liquidity in the interbank market: Concept of eligible numéraires, [KST2013]
- Intertwinement of liquidity risk with credit risk
 - A refined structural approach

- Modelling of the interbank market and credit derivatives based on one foreign market
- Aspects of liquidity, [FT2013]
 - Institutional liquidity
 - Asset liquidity / liquidity in the interbank market: Concept of eligible numéraires, [KST2013]
- Intertwinement of liquidity risk with credit risk
 - A refined structural approach
- Consistent recalibration (CRC) models, [HSTW2015]

References

[AJ1991] AMIN, K. AND JARROW, R. Pricing Foreign Currency Options under Stochastic Interest Rates (1991). *Journal of International Money and Finance*. No. 10, pp. 310–329.

[CFG2014] CUCHIERO, C., FONTANTA, C. AND GNOATTO, A. A General HJM Framework for Multiple Yield Curve Modeling (2014). *Preprint, arXiv:1406.4301v1*.

[FT2013] FILIPOVIC, D. AND TROLLE, A. B. The Term Structure of Interbank Risk (2013). *Journal of Financial Economics*. Vol. 19, pp. 707–733.

[HSTW2015] HARMS, P., STEFANOVITS, D., TEICHMANN, J. AND WÜTHRICH, M. Consistent Recalibration of Yield Curve Models (2015). Preprint, arXiv:1502.02926v1.

[JT1991] JARROW, R. AND TURNBULL, S. A Unified Approach for Pricing Contingent Claims on Multiple Term Structures: The Foreign Currency Analogy (1991). *Working Paper, Cornell University.*

[KST2013] KLEIN, I., SCHMIDT, T. AND TEICHMANN, J. When Roll-Overs Do Not Qualify as Numéraire: Bond Markets Beyond Short Rate Paradigms (2013). *Preprint, arXiv:1310.0032v1.*